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ABSTRACT 

We use a variant of a discrete time exclusion process, studied by Yaguchi 
[7], to construct a Markov random field which is K but not Bernoulli. In- 
stead of having all the particles in the exclusion process indistinguishable, 
this system has two different types of particles. 

1. I n t r o d u c t i o n  

Fr iedman and Ornstein proved tha t  finite state space, mixing Markov chains are 

isomorphic to Bernoulli  shifts [3]. In higher dimensions, however, this theorem 

does not  hold. Ledrappier  created a simple example of a Z 2 Markov r andom 

field which is mixing, but  is not  3-mixing, and has zero entropy [5]. Many  other  

people have expanded upon  Ledrappier 's  example to create a wide variety of 

zero ent ropy mixing Z 2 Markov random fields. In this paper  we construct  a Z 2 

Markov r andom field which is K (equivalently, is of completely positive entropy, 

has trivial full tail [1] [4]) but  is not  isomorphic to a Bernoulli shift. 

The  example tha t  we construct  is the combinat ion of two Markov r andom 

fields. The  first is a simple zero entropy Markov random field (ft ' ,  S, T, it '). Let 

! t - - 
f~' = (w' e (red, blue)Z2t w~,j = w~+l,jV~ ,3) 

where (S(w'))i , j  = (w')i,j+l and (T(w'))~,j = (w')~+l,j. 
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S and T are the shifts down and to the left and the measure #~ on vertical 

cylinder sets comes from the Bernoulli two shift. Consider the action of T as the 

progression of time. Since T(w I) = w ~ this system is not changing under time. 

This clearly prevents the process from being isomorphic to a Bernoulli shift. The 

second is a discrete time exclusion process on the integers introduced by Yaguchi 

[7]. This is a type of interacting particle system which we will show is isomorphic 

to a Bernoulli shift. 

The example that we will show is K but not Bernoulli is what we call a colored 

exclsuion process. Each point is a pair (w, z) where w comes from the exclusion 

process and z C (red, blue) z. The action of T will again represent the progression 

of time. The projection of T(w, z) onto the second coordinate is either z or a(z) ,  

where a is the shift. Thus for any time t the projection onto the second coordinate 

of T t (w, z) is a point of the form a i (z). This is the key to showing that the colored 

exclusion process is not isomorphic to a Bernoulli shift. 

The rest of the paper is organized as follows. In section 2 we define both the 

exclusion process and the colored exclusion process. In section 3 we prove that 

they are both Markov random fields. In section 4 we use Yaguchi's arguments to 

show that the exclusion process is K. Moreover, it is isomorphic to a Bernoulli 

shift. In section 5 we show that the exclusion process provides enough randomness 

so that colored exclusion process is K. Finally, in section 6 we prove that the 

colored exclusion process is not isomorphic to a Bernoulli shift. Moreover, it 

does not belong to a broader class of transformations called loosely Bernoulli 

transformations. 

2. C o n s t r u c t i o n  

The basis of this example is a discrete time exclusion process on the integers which 

was originally studied by Yaguchi [7]. The description of it below is informal. 

See [7] for a more rigorous description. Some of the arguments in that paper 

have been reproduced here. 

Arrange the integers in a vertical line, and on each integer place a container 

which can hold at most one particle. At any time the state of our system is 

given by x C X = (0, 1) z, where xi = 1 implies that there is a particle in the 

ith container. After one unit of time each of our particles will either stay in the 

same container or move down one container. To describe the movement of our 

particles we must choose a, 0 < a _< 1/2. The process evolves in the following 

way. During each interval of time, every particle decides independently with 

probability a if it wants to move down one space. It also checks if the container 
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below it is vacant.  If bo th  the particle decides to move and the container below 

is empty, then the particle moves down one container. Otherwise it stays in the  

same container.  

The  s ta t ionary  measures on (0, 1) z for this process were classified by Yaguchi. 

T h e y  are a family of point  masses and a family indexed by c~ and p, 0 _< p _< 1, 

which specifies a density of containers tha t  have a particle. Define xm(i) -- 0 for 

all i > m and xm(i) = 1 for all i _< m. Then  for each m the point  mass at  Xm 
is stat ionary.  The  following result of Yaguchi says for each a and p we have a 

unique s ta t ionary  measure on X.  Define 7 /=  ( l /p )  - 1 and 

p = 7 ' + l - v / ( ~  , + 1 )  2 - 4 7 ~  

2V 

LEMMA 1 (Yaguchi): The nontrivial stationary measures for the exclusion 
process are the Markovian measures p~,p given by the transition probabilities 

P(0,  0) = 1 - /3/c~,  P(1 ,  0) = ~7' /~,  P(0,  1) = 13/~, P(1,  1) -- 1 - /~7 / (~  

where P(p, q) = #(xi+l = qlxi = P). 

Proof: This is proved in [7]. Figure 1 gives a concrete example of a point  in our 

space and of the measure #~,p. | 

To convert  this exclusion process into a two dimensional space-time process we 

use the space ~t = (0, 1) z2. S and T are the shifts down and to the left. Moving 

one column to the right corresponds with t ime increasing by one unit. The  

measure ~ , p  on ~ has measure it~,p on vertical cylinder sets and is determined 

on other  cylinder sets by it~,p and the transit ion probabilities of the exclusion 

process. Now fix c~ and 0 < p < 1 and drop the subscripts on it and ~. 

Now we color each particle independently so tha t  the color of each particle is 

constant  th roughout  time. This is illustrated in Figure 1. To do this coloring 

formally we use the exclusion process as a base for a skew produc t  with the one 

dimensional Bernoulli two-shift. 

We have already defined ~ = (0, 1) z2. Now define Z = (red, blue) z. Now, for 

the process we are interested in, (S,T, f~ × Z,-fi × ~), is defined as follows: 

-S(w, z) = { (S(w), a(z)) i f  w0,0 = 1, 
(S(w), z) if w0,0 = 0, 

and 

T(w, z) = { (T(w),(T(w)' z)a(z)) else,if w0,0 -- 1 and o)1,o = 0, 
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where 

(S(w))~,j  = (w)i,j+l and (T(a)))i , j  -- (a))i+l,j 

are the shifts down and to the left and a is the shift (a ( z ) ) i  = Zi+l.  The measure 

u on Z comes from the Bernoulli two shift. The example in the introduction is 

the case when p = 1. We will work with the three set partition which tells us 

whether there is a ball in container 0 at time 0 and, if so, what color it is. 

0 ® ® 0 0 0 0 0 @ @ @ 0 0 0 0 0  
0 0 0 ® ® 0 0 0 0 0 0 @ @ @ @ @  
® ® ® ® 0 ® ® ® ® ® ® ® ® ® 0 0  
® ® ® 0 ® ® ® ® ® ® ® 0 0 0 ® ®  
@ @ 0 ® ® ® 0 0 0 0 0 ® 0 0 0 0  
0 0 @ @ @ 0 ® ® ® ® 0 0 ® ® 0 0  
® ® ® 0 0 @ @ 0 0 0 ® 0 0 0 ® ®  
0 0 0 ® 0 0 0 @ 0 0 0 ® ® ® ® ®  
0 0 0 0 ® 0 0 0 @ @ @ @ @ @ @ 0  
@ @ 0 0 0 ® 0 0 0 0 0 0 0 0 0 @  
@ 0 @ 0 0 0 ® ® ® ® 0 0 0 0 0 0  
0 @ 0 @ 0 0 0 0 0 0 ® ® ® 0 0 0  
0 0 @ 0 @ @ @ @ 0 0 0 0 0 ® 0 0  
® ® 0 @ @ @ @ 0 @ @ @ @ 0 0 ® ®  
0 0 ® ® 0 0 0 @ 0 0 0 0 @ @ 0 0  
O 0 0 0 ® ® O 0 @ O 0 0 0 O @ @  

Figure 1. In this picture is a portion of a point w E f~. A big 

circle represents a container, small circles and dots represent the 

two different types of colored particles. The flow of time is to the 

right. In the leftmost column is a portion of a point x C X which 

has 
Xo,  X l  , X3 ,  X4~ XT , X8 ,  X lO,  X l 4  , X l 5  ~ 0 and 

X 2 , X h t X 6 t X 9 ~ X 9 ~ X l l ~ X l 2 , X l 3  z 1. 

The tt~,p measure of all points that have these same values for xo 

through x15 is (1 - p)P(O,  0)4p(0 ,  1 )4p (1 ,0 )4p (1 ,  1) 3. 
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3. T h e  c o l o r e d  e x c l u s i o n  p r o c e s s  is M a r k o v i a n  

Before we begin to show that  the colored exclusion process is Markovian, we 

make a few definitions and observations about  the exclusion process. A vertical 

cylinder set A is defined by a finite set S A C  Z and choices Aj  E (0, 1) for 

j C SA. Then A = (x]xj = A j V j  E SA).  On vertical cylinders sets A we define 

the measure p t (x )  by 

#t (x )  = #{w C TtA[ wo,i = xo,i for all i E Z}. 

In other words #t (x )  is the conditional probability the system is in set A at t ime 

t, given tha t  it was in state x at time 0. 

A right half plane cylinder set B is defined by a finite set SB C Z 2, i > 0 

V(i , j)  C SB and choices Bj  C (0, 1). Then B = (wlw j : B j V j  E SB).  

Definition 1: For right half plane cylinder sets, B, we define -fi(x)(B) to be the 

conditional probabili ty the system is in set B given that  it was in state x at t ime 

0. The definition of the exclusion process gives us the following lemma. 

LEMMA 2: For a cylinder set B,  -fi(x)(B) depends only on Xm, ..., Xn where m ---- 

m i n j  - i, ( i , j )  • SB and n = m a x j  + i, ( i , j )  • SB. 

Proof: This is easily proved by induction on the largest i E SB. | 

The following lemma says that  for finite periods of time the process develops 

independently in regions which are sufficiently far apart .  

LEMMA 3: I f  A and B are right hal f  plane cylinder sets and there exists an m 

such that  j > rn + i for all i , j  E SA, j < m - i for all i, j E SB, then 

~ ( x ) ( A  ~ B)  = -~(x)(A)-~(x)(B).  

Proob Again this is proved by induction on the largest i. The lemma is vacuous 

for i = 0. The inductive step is true by applying Lemma 2 and the inductive 

hypothesis. 1 

The exclusion process is Markovian as a Z action and has a Markovian invariant 

measure. Now we will show that  it is Markovian as a Z 2 action. 

Let R be a rectangle in Z 2 and OR = ((i,J)l d ( i , j ) , R )  = 1) (where 

d( (x , y ) ,  (x ' , y ' ) )  -- sup Ix - x'], lY - Y'D. Now let B be a cylinder set defined 

on the boundary  of R, I and J be cylinder sets defined inside and on the bound- 

ary of R, and  O a cylinder set defined outside R such that  O, I ,  and J all agree 

with B on the boundary of R. 
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Detlni t ion 2: A Z 2 random field is M a r k o v i a n  if for any rectangle R, and 

cylinder set B, I, and O, ~(II B) = -fi(IlB N O) . 

Remark 1: Often times the definition of a Markov random field is defined with 

the boundary of a rectangle using the L 1 metric, 

d((x,y),  (x ' ,y '))  = I x - x ' l  + Iv -Y'I .  

While these two definitions are different, every Markov random field which sat- 

isfies our weaker definition has a generating partition which the satisfies the 

stronger definition. 

LEMMA 4: The  exclusion process is Markovian.  

-fi(llBnO ) Proo~ We will show that ~(JISnO) is independent of O, which is equivalent 

to our definition. Without loss of generality O can specify everything that  hap- 

pens on a big right isosceles triangle with hypotenuse a vertical line on the left 

hand side except inside the rectangle R. We can also choose I and J to specify 

everything that  happens inside R and on the boundary of R. See Figure 2. Thus 

~ ( I  n B n O) = #(L)~q(1 - a) ~ and -fi(J N B n O) = # ( L ) a m ( 1  - a)  n 

for some q, r, m, and n, where L is the vertical cylinder set on the left hand side 

of the triangle. 

Figure 2. This illustrates the choice of the cylinder sets in the proof 

of Lemma 4. 

Each of the above probabilities is the product of terms coming from either the 

left hand side, the movement of particles inside the rectangle or the movement of 

particles outside the rectangle. The terms from the left hand side and transitions 
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outs ide  the  rec tangle  will cancel  out  in the  ra t io ,  leaving it i ndependen t  of the  

choice of O. T h e  following will make  t ha t  precise. 

Let  

Sl ----- ~ ( ( i , j ) l ( i , j ) , ( i  + 1 , j  - 1) E R U O R  a n d  I ( i , j  ) = 1, I ( i , j -1)  = O, 

I(i+l,j) = 1), 

t l  = # ( ( i , j ) l ( i , j ) ,  (i + 1 , j  -- 1) E R U  OR and I(i,j) = 1, I ( i , j_ l )  = 0, 

I(i+~,j) = 0), 

s2 = # ( ( i , j ) l ( i , j ) , ( i  + 1 , j  - 1) E R U  OR and J(i,j) = 1, J ( i , j -1)  -- 0, 

J(i+l,j) = 0), 

t2 = ~ ( ( i , j ) l ( i , j ) ,  (i + 1 , j  - 1) E R U O R  and J(id) = 1, J ( i d_ l )  = O, 

J(i+l,j) = 1). 

Define o and  p so t ha t  o = q - s l  = m - s2 and p = r - t l  = n - t 2 .  This  can 

be  done  since o and  p are  de t e rmined  by values of O. Then  

~ ( I  n B n O) = # ( n ) a  ~(1  - a) t ' a ° (1  - a) p. 

and  

Thus  

~ ( J  n B N O) = #(L)aS2(1 - a)t~a°(1 - a) p. 

-p(IIB O O ) _ -f i(I  N B n O )  _ (c~)s,_~2(l_a)tl_t2" 
-fi(JIB O O) -fi(J O B n O) 

As this  is i ndependen t  of O, the  exclusion process  is Markovian.  | 

LEMMA 5: The  colored exclusion process is Markovian. 

Proof: T h e  colored exclusion process  is Markovian  because  knowledge of the  

exclusion process  on a rec tangle  and its boundary ,  and  the  coloring of the  par t ic les  

on the  b o u n d a r y  de t e rmine  the  coloring of the  par t ic les  inside of the  rectangle .  

Thus  knowledge  of the  coloring outs ide  the  rec tangle  and its b o u n d a r y  provides  

no add i t i ona l  in fo rmat ion  a b o u t  the  coloring inside the  rectangle.  I t  also provides  

no in fo rmat ion  a b o u t  the  exclusion process  on the  inside of the  rectangle .  Since 

the  exclus ion process  is Markovian ,  the  colored exclusion process  is Markovian .  

| 
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4. T h e  e x c l u s i o n  p r o c e s s  is K 

This  section boils down to showing tha t  if we know the part icle sys tem is in s ta te  

x E (0, 1) z at  t ime 0 then, for some large t, we know very little abou t  where  

the  part icles  are a t  t ime t. In order to show tha t  the exclusion process is K as 

a Z 2 act ion we will apply  Conze 's  Z 2 version, [1], of the  P inske r -S ina i -Roh l in  

theorem.  T h e  ruth Conze tail is the subset  of Z 2, ( ( i , j ) l  i < - m  or i < 0 and 

j < - m ) .  

THEOREM 1 (Conze): A Z 2 action is K if  for any  n and any e > 0 there exists 

an m and a set  G, ~(G)  > 1 - e, which is the union of cylinder sets defined 

in the mth  Conze tail, and which has  the following property. The conditional 

distribution of any cylinder set  A defined inside S = ( ( i , j ) l -  n <_ i , j  <_ n) given 

any cylinder set  C C G is within e of the unconditional distribution. That  is, 

[g(AIC ) - g(A)l  < e for all A defined in S and C C G [1]. 

In Figure  3, Conze 's  theorem says tha t  condit ioning on a lmost  any cylinder 

set defined in regions 1,2, and 3 (the Conze tail) we get near ly the uncondi t ional  

d is t r ibut ion in the square.  

3 4 

Figure  3. Condi t ioning on regions 1, 2, 3, and 4 tells us more  t h a n  

condit ioning on the  Conze tail, regions 1, 2, and 3. By  the  one di- 

mensional  Markov property,  condit ioning on regions 1, 2, 3, and 4 

is the  same as condit ioning on the line l and region 1. By  L e m m a  

3 the  condit ional  dis t r ibut ion on region 5 given what  happens  on l 

and region 1 is the condit ional  dis t r ibut ion given what  happens  on 
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1. By L e m m a  2 if the  condi t ional  d i s t r ibu t ion  on ver t ica l  cy l inder  

sets  defined on the  line segment  j given I is near  the  uncond i t iona l  

d i s t r i bu t ion  then  the  condi t ional  d i s t r ibu t ion  on region 5 given l 

is near  the  uncondi t iona l  d i s t r ibu t ion .  Thus  the  condi t iona l  dis t r i -  

bu t ion  on region 5 given the  Conze tai l  is near  the  uncond i t iona l  

d i s t r ibu t ion .  

To s t a r t  the  p roof  t ha t  the  exclusion process  is K we make two observa t ions  

which let us s t a t e  a sufficient condi t ion  for the  exclusion process  to be K more  

easily. These  are  bo th  i l lus t ra ted  in F igure  3. 

Our  first s impl i f ica t ion is tha t ,  ins tead  of condi t ioning  on Conze ta i l  pas ts ,  we 

can condi t ion  on d i s tan t  left half  p lane  pasts .  The  cap t ion  of F igure  3 shows t h a t  

condi t ion ing  on an a p p r o p r i a t e  Conze ta i l  tel ls  us no more  t h a n  condi t ion ing  on 

a ha l f  p lane  pas t .  

The  second s impl i f ica t ion  is tha t ,  ins tead  of showing t ha t  condi t iona l  dis tr i -  

bu t ions  on a large square  are  close to the  uncondi t iona l  d i s t r ibu t ion ,  we only 

need to  show tha t  d i s t r ibu t ions  on (larger) ver t ical  cyl inder  sets are  close to  the  

uncond i t iona l  d i s t r ibu t ion .  By L e m m a  2, the  d i s t r ibu t ion  on the  ( larger)  vert i -  

cal cy l inder  sets de te rmines  the  d i s t r ibu t ion  on the  square.  Thus  the  exclusion 

process  is K as a Z 2 ac t ion  if for every l, ver t ical  cy l inder  set A, wi th  SA = [0, l], 

and  e > 0 there  exists  a t such t ha t  for e most  x 

I~t(x)(A) -~(A)I < 2e, 

where  e mos t  x is used to mean  there  exists  a set of x of measure  > 1 - e. 

In o rde r  to  do this  we in t roduce  a coupl ing of the  Markov process.  The  coupl ing  

creates  a family  of measures  # t ( x ,  y)  on X x X which have marg ina l s  t t t ( x )  and  

#t (Y) .  If  xi = yi = 1 then  we say tha t  the  two par t ic les  are pa i red  together .  

The  idea  of this  coupl ing process  is t ha t  it  has par t ic les  t ha t  are pa i red  toge the r  

and  move toge the r  as much as possible.  Under  this  coupl ing we will show tha t  

the  pe rcen tage  of pa i r ed  par t ic les  cannot  decrease and tends  towards  one a lmos t  

sure ly  as t ime  progresses.  

The  coupl ing  works as follows. Suppose  for some i there  are  par t ic les  in con- 

t a ine r  i for b o t h  x and  y, and  they  bo th  are free to  move (x i  = Yi = 1 and  

x i - 1  = Yi-1 = 0). Then  the  par t ic les  e i ther  move toge the r  (x i  = Yi = 0 

and  x i -1  = Yi-1 : 1) with  p robab i l i ty  c~, or s tay toge the r  (xi = Yi = 1 and  

x i -~  = Yi-1 = 0) wi th  p robab i l i t y  1 - c~. If, for some i, the  par t i c le  in con- 

t a ine r  i in y is free to  move, bu t  the  par t ic le  in conta iner  i in x cannot  move 

(x i  = Yi = 1 , x i - 1  = 1 , y i - 1  = 0 and x i - 2  = 0), then  we canno t  gua ran tee  
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that  the paired particles stay together. But we can demand that  the particle in 

container i of y be paired with one of the particles in x. Thus we require with 

probabili ty 1 - 2(~ neither particle moves (x~ = xi -1  = y~ = 1), with probability 

(~ only the y particle moves (xi = xi-1 = 1, yi = 0), and with probability c~ only 

the x particle moves (xi = Yi = 1, xi-1 = 0). In any other configuration there is 

no risk of breaking up paired particles without creating new pairs, so all other 

particles decide if they want to move independently. Since at least one of a pair 

of matched particles is still matched one instant later, the number of particles 

that  are paired up does not decrease as time progresses. 

Now we want to show that  this coupling forces the fraction of particles that  are 

paired to go to 1 as t ime progresses. Define p(x, y), the density of disagreement 

of x and y, to be 

1 
p(x , y )  = l i r a  2 - ~ ( #  of i e [ - n , n ]  such that  xi ~ Yi). 

By the argument above, if the coupled system can evolve from (x, y) to (x', y') 

then p(x,  y) > p(x' ,  y'). 

LEMMA (Yaguchi): For every p > 0 there exists a t and 5 > 0 such that  i f  

p(x,  y) = a > p, and x and y are normal for it, then 

i t t ( x , y ) ( ( x ' , y ' ) l p ( x ' , y '  ) < a - 5) = 1. 

Proof." By the normality of x and y, and the density of disagreement, we can 

choose an l and d > 0 such that  the density of N where there exists i , j  C 

( N / + I ,  ( N +  1)/) such that  xi = 1 and Yi = 0 and xj  = 0 and yj = 1 is at least d. 

Consider one of those intervals. By time t = 1 there is some positive probability 

(> q = ((~(1 - (~))~2 > 0) that  the coupling process will have paired up at least 

two of the two previously unmatched particles that  started out in the interval 

(Nl ,  N ( l  + 1) - 1). By Lemma 3 the process develops independently in sufficiently 

separated regions. If we choose our intervals of length 1 at least 4l apart  each will 

have independently probability > q of pairing up at least one pair of previously 

unmatched particles. By the strong law of large numbers the coupled process 

will have almost surely eliminated at least a fixed fraction 5 = dq/lOl of the 

discrepancies by time t. Since the coupling does not allow the fraction of paired 

particles to decrease, 

i t s (x ,  y ) ( ( x ' ,  y ' ) lp (x ' ,  y')  < o - 5) = 1. • 
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THEOREM: Tile exclusion process is K .  

Proof." Repeated application of the previous lemma gives tha t  for any e there is 

a t large enough such tha t  for almost all x and y, 

/~ t (x , y ) ( (x ' , y ' ) tp (x ' , y '  ) < e) = 1. 

Given an l and an e find t such that  the comment  above is t rue for ~3/1. We 

say an interval, (N, N + l - 1), is good for x and y if, with probabil i ty 1 - e, the 

coupling makes no errors on this interval. Thus some interval, (N, N + l - 1), 

is good for e 2 most  (x,y) .  Thus for most  x, most  of the y make this interval 

good. Let A be a cylinder set specifying the location of particles in containers 

Nl  to  (N + 1)l - 1. Since #(A)  is the integral over all y of # t (y ) (A) ,  for these x, 

I# t (x) (A)  - #(A)I < 2e. By translation invariance the same s ta tement  holds if A 

is a cylinder set specifying the location of particles in containers 0 to 1 - 1. | 

It is also possible to use the coupling to show tha t  the exclusion process is 

isomorphic to a Bernoulli shift. This shows tha t  the coloring is necessary to 

const ruct  a Markov r andom field which is K but  not  Bernoulli. 

5. T h e  c o l o r e d  e x c l u s i o n  p r o c e s s  is K 

The  previous section told us tha t  if we know the exclusion process is in state x at  

t ime 0, then, for large t, this information tells us little about  where the particles 

are at t ime t. Now, in order to show the colored exclusion process is K,  we want 

to say tha t  if we know the location and the colors of the particles at t ime 0, then, 

for large t, we know little about  the location and colors of the particles in a finite 

number  of containers at t ime t. We can make the same simplifications as in the 

previous section, so we only need to worry about  the conditional distr ibution on 

vertical cylinder sets given half  plane pasts. 

There  are three main  steps for showing that  the colored exclusion process is 

K.  The  first two are s ta tements  about  the exclusion process only and the third is 

a s ta tement  about  the exclusion process and colorings. First, we show tha t  if we 

pick a typical  point,  x C X and a particle in x, and if we wait long enough, then 

the dis t r ibut ion of particles in a fixed number  of containers below the container 

with our particle is almost  the uncondit ional  distribution. This is L e m m a  8. Next 

we use tha t  to prove tha t  if we pick almost  any particle in most  any point  at  

t ime 0, then, if we wait long enough, for every container the probabil i ty tha t  our 

particle is in tha t  chosen container at t ime t is small. This is Lemma 11. Finally, 

we will use this to show tha t  if we condition on seeing a typical (x, z) at  t ime 0, 
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and any vertical cylinder set A telling us the location of particles in containers 

- l  to 0 at t ime t, this tells us very little about  the color of those particles. 

Define f~* to be the set of all points in f~ with a particle in container zero at 

t ime zero (f~* = (a~ I w0,0 = 1)). Also let X* to be the set of all states with a 

particle in container zero (X* = (x I x0 = 1)). 

Given x E X* we number  the particles, calling the particle in container 0 to 

be particle 0, the first particle above particle 0, particle 1 and so on. We define 

x ~ to be the container tha t  particle i is in. Given w Ef t*  we say tha t  particle i 

is the particle which was the i th particle above 0 at time 0. Our  goal is to show 

tha t  if we pick a point  x E X,  and a particle in x, and then wait long enough, we 

lose knowledge of the posit ion of other  particles in a fixed number  of containers 

below our chosen particle. Since the dynamics of the process are shift invariant, 

we pick our  point  x and our particle, then shift x up or down so tha t  our particle 

is in container  0. Then  we s tudy the behavior of the system given this new point. 

This way we only need to deal with x E X*. 

Define the function f :  X* -+ N z so that  ( f ( x ) ) i  = x i - x i -1.  N z inherits a 

measure m from f~*. The  function f is well defined for all points tha t  have an 

infinite number  of particles above and below zero, and is invertible on tha t  set. 

Define the following process on N z. For each i E Z flip an ~, 1 - c~ coin. 

If  the ct side is chosen and if zi > 1, then decrease zi by 1 and increase zi+l 

by 1. Otherwise do nothing. Do this simultaneously for all i. This is a measure 

preserving process because it is essentially a restatement  of our exclusion process. 

In this new process zi - 1 represents the number  of empty  containers, "spaces", 

between particles i and i - 1. If x, y E N z we say tha t  min(xi,  Yi) - 1 is the 

number  of paired spaces between particles i and i - 1 in the x name and the y 

name. 

Now we will analyze this system and then pull our results back to the exclusion 

process. Define 
2 ~ - n  min(xi,  Yi) 

P ( x , y )  = lim 
n--4c~ En_n Xi -~ Yi 

Next  we int roduce a coupling of this process. For each i E Z use just  one coin to 

determine if a space moves from i to i + 1 in x and in y. This coupling defines 

a family of measures, ms(x ,  y),  where mr(x ,  y ) (S )  is the conditional probabil i ty 

tha t  the sys tem was in s tate  (x, y) at  t ime 0 tha t  it is in set S at  t ime t. Under  

this coupling, if two spaces get paired up then they stay paired for all time. 

LEMMA 7: For any  ¢ > 0 there exis ts  a t such that  for all normal  x and y 

y)((x', J)] P ( x ' , y ' )  > 1 - = 1. 
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Proof." First we prove that  for any cr < 1 there exist a t and a 5 such that  for 

all normal x and y with P ( x ,  y) = p < cr 

rr~t(x,y)((x ' ,y ' ) l  P ( x ' , J )  > pq- (~) = 1. 

As in the previous section, the lemma will be proven by repeated applications of 

the above statement.  

By the normality of x and y and the density of disagreement, p, we can choose 

an I and d > 0 such that  the density of N where there exists i , j  E ( N / + I ,  ( N + I ) I )  

such that  xi > Yi and xj  < yj is at least d. By time t = 1 there is some positive 

probability (> q = (c~(1 - c~)) ~2 > 0) that  the coupling process will have paired 

up the two previously unmatched spaces. For finite lengths of t ime the process 

develops independently in regions that  are separated by large enough distances. 

So if we choose intervals, (N l  + I, ( N  + 1)l), that  are at least 41 apart,  each will 

have independently probability > q of pairing up at least one pair of previously 

unpaired spaces. By the strong law of large numbers the coupled process will 

have almost surely paired up a fixed fraction > qd/lOlp = 5 of the unpaired 

spaces. Since paired spaces cannot be separated 

1 1 / / . 

Now we introduce a few definitions. These will let us make precise the state- 

ment that  given most any particle in any point x E X* at time O, then by time t 

the distribution of particles in the l containers below the container particle 0 is 

almost the same as the unconditional distribution in X*. Define 

W~ (w) = ~ 0 if particle i moves down between times j and j + 1, 
1 if particle i does not move down between times j and j + 1. ( 

For the rest of the paper  A will be a vertical cylinder set which specifies where 

particles are in containers - l  to 0. Also let A = (a; I co0_z = A_~, ...,w0,0 = A0). 

Define 

At = (calw E ( T - t S  E; -1  W°(~)A) ~ ~*), 

the set of all points in ~* such that  at time t cylinder set A is directly below 

particle O. 

LEIvIMA 8: 

all A 

Given any 1 and c > 0 there exists a t such that  for most  x C X*  and 

I-fi(x)(At) - ~(AI~*)I < e. 
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Proof: Given e choose N such tha t  for e 2 most  x, we have ~-]~lo-1 xi < N.  Also 

choose t such tha t  by t ime t for c 2 most  x and y 

mt(x,y)((x',y')i P(x',y') > 1 - (e /N) 2) = 1. 

Then  for ~2 most  points x and y tha t  satisfy the second of those conditions 

! ! mt(x,Y)((x',Y')l xi = Yi for all - 1  < i < 0) > 1 -  e. 

Thus  for most  x, most  y make this true. So for most  x and all A 

I-fi(x)(At) - N la*)l < i 

In the next two lemmas we show tha t  if we start  with a typical point x E X* 

the pa ths  tha t  particle 0 takes from time T to time T + M are very similar to 

an independent  r andom walk. We will use this to show tha t  for some t ime t, 

the condit ional  probabil i ty given tha t  the system was in state x at t ime 0, tha t  

particle 0 is in container j at t ime t, is small for all j .  

Define Pb = (wlw E f~* and wJo (w) = bj Vj, T < j < T + M). 

LEMMA 9: For  any  e > 0 there exists a T such that  for most  x 

Pb 

Proof: This  follows directly from Lemma 8 because the probabil i ty t ha t  a 

particle moves in a certain way from time 0 to n is determined by the parti- 

cles in the 2n containers directly below our particle at  t ime 0. | 

Now we quote a theorem from Yaguchi 's paper. 

LEMMA 10 (Yaguchi): 

-fi(pblf~*)= (~P(O, l ) ) i  (1 c~P%O'I)) M-i 

where i is the number  ofj  such tha t  bj = 1. 

Proof: This is proved in [7]. | 

This next  lemma says tha t  given almost any x E X* at t ime 0, we lose t rack 

of which container particle 0 is in as t ime progresses. 



Vol. 112, 1999 K BUT NOT BERNOULLI 263 

LEMMA 11: For any e > 0 3 T  such that for mos t  x E X*  and for all j 

T-1 
g(x)(col E W°(co) = j )  < e. 

o 

Proof: First  we will sketch the proof, and then we will list the order to choose the 

parameters  in a consistent manner.  Choose T, M, and N so if T < a, b < T + M 

and b - a > N,  then for most  x and all m 

b 

(1)  (x)(col w (co) = < 
a 

Either  the lemma is t rue or there exists a t ime tl when the probabil i ty tha t  

the particle is in container Cl is greater than e/2. Define 

t l  

S1 = (COl CdO,j = xjVj ,  E W(~ (bd) = - -C1) .  
0 

If there does exist such an $1, consider the rest of the space (f~ \ $1). If there 

is a t ime t2 and container c2 such that  the probabili ty tha t  the particle was 

not in container cl at t ime tl ,  but  is in container c2 at t ime t2, is greater than  

e/2, then create S~. Then  apply the same procedure to the remaining space, 

(f~ \ ( $ 1  U $2 O - . .  U Si-1)) ,  creating 

Si = col P(co) = x, Wo3(co) = - c i ,  co ¢ . 
0 

Continue in this manner  until it is impossible to create another  such Si. There  

are at most  [2/~] ([r] represents the greatest integer < r) of these Si since 

~ (x ) (S i )  > e/2 and they are disjoint. 

The  points  in Si have their paths  of particle 0 close together for times near ti 

but  not  for t imes far from ti. By equation (1), for any t ime t, T <_ t < ti - N or 

T + M >_ t > ti + N,  a set of measure at most  e2/4 is in set Si and particle 0 

is in any given container at t ime t. Thus every t ime t and container c such tha t  

t ~ (ti - N ,  ti + N )  for all i at  most  (e2/4)[2/e] < e/2 of the points in an Si have 

particle 0 in container c at t ime t. By definition at most  e/2 of the points in no 

Si have particle 0 in container c at t ime t. Thus  for those t no more than  e of 

the paths  are in container c at t ime t. 

Given e, choose N such tha t  for all i, (aP(O, 1)/7)i(1 - a P ( 0 ,  1)/~/) N - i  < e2/4. 

Then  choose a length of t ime M long enough so tha t  (2N + 1)[2/e] /M < e 2. 
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Choose a distance T so tha t  Lemma 9 holds with e2/8 and M.  Then  for e 2 most  

of the t imes from time T to time T + M most  particles have no container where 

more than  ( of the paths  are in any given container. Thus  there exists a t ime T 

between T and T + M where most  points x E X* have no container,  c, where 

the condit ional  probabil i ty given x that  particle 0 is in container c at  t ime T is 

greater  than  ~. I 

The  previous lemma says tha t  given most  any star t ing point x, then if we wait 

long enough we lose track of where particle 0 is. Theorem 2 says tha t  given most  

any staring point  x we lose track of the position of particles over time. The  next 

lemma is dedicated to showing that ,  as time progresses, we lose knowledge of 

these two things simultaneously. 

Tha t  is for R sufficiently large, conditioning on star t ing point  x at t ime 0, and 

tha t  there is a particle in container i at t ime R, then we don ' t  know where tha t  

particle was at t ime 0. Furthermore,  if we condition on seeing x at t ime 0 and 

A at t ime R, then we still don ' t  know where the particles we are seeing in A at 

t ime R were at t ime 0. Thus  knowing the coloring at t ime 0 will not  tell us much 

about  the coloring of the particles in (-1,  0). 

To make this precise we define D~'R(m)  to be the conditional probabil i ty given 

we see x at t ime zero and a particle in container i at t ime R tha t  it is particle 

m. Thus  
E 21 = x m - i )  

D i , n ( m )  = 

We also need to introduce another  definition. We are concerned only with A 

tha t  indicates the presence of at least one particle. For those A tha t  don ' t ,  the 

coloring is not noticeable. Let k be the highes~ container tha t  A says must  have 
i,R a particle. Given x and A, we define a distr ibution D A . This distr ibution tells 

us the conditional probabil i ty given tha t  we see x at t ime 0 and T - i A  at t ime R 

tha t  the particle m is the highest numbered particle in or below container i: 

D ~ n ( m )  = -fi(x)(w E T - i A ,  E R-1 W~m(W) = x m - i - k) 

~(x)(w[ w C T - i ( g ) )  

LEMMA 12: For a n y  ~ > 0 there  exis t  R such tha t  for m o s t  x for m o s t  i and  for 

all m ,  D i ' R ( m )  < e and D ~ R ( m )  < e. 

Proof:  By Theorem 2 we know tha t  for most  x the denominators  are approx- 

imately p and #(A) respectively. Thus  it suffices to show tha t  numera tors  can 

be made  arbitrari ly small. If A indicates there is a particle in container k, 

-fi(x)(w I ~-~R=ol W3m(W) = x m - i - k) is an upper  bound on the numerators .  
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The previous lemma holds for a given particle based on the location of particles 

in a finite number  of containers below the given particle. Thus  for a normal  point  

x most  particles satisfy Lemma 11. Choose R big enough so tha t  L e m m a  11 holds 
- -  R--1 with e 2. For each i and m such tha t  #(x)(w] ~j=o W~m(w) = xm -- i) > e means 

tha t  L e m m a  11 did not hold for particle m. Each particle m for which L e m m a  11 

does not  hold can only lead to at most  [1/c] such i. Since Lemma 11 holds for e 2 

most  m there are at most  e2[1/e] i such tha t  for any m, ~(x)(w I }-~R=o WJm(w) = 
x " ~ - i )  > e. Since the numerators  can be made to be arbitrari ly small, the l emma 

is true. II 

Now we use L e m m a  12 and the weak law of large numbers  and condit ion on 

seeing (x, z) at t ime 0, and A at t ime t. We will show tha t  this does not tell us 

much about  the coloring of the particles in containers -1  to 0 at  t ime t. This 

gives us the following theorem. 

THEOREM 3: The colored exclusion process is K. 

Proof: This proof  is an adapta t ion  of Mejilson's theorem [6] tha t  a suitable 

skew produc t  of a Bernoulli  shift with an ergodic t ransformat ion is K.  We will 

condit ion on having the state of the colored exclusion process at  t ime 0 be (x, z), 

and the location of particles in containers - I  to 0 at t ime t be A. This gives us a 

dis tr ibut ion on the possible colorings of the particles. We break this dis t r ibut ion 

up into several parts. On each of these we apply the weak law of large numbers.  

Then,  when we sum up over all the parts, we see that  the conditional dis tr ibut ion 

of colorings is nearly the uncondit ional  distr ibution of colorings. 

By the same arguments  as in the previous section we only need to worry about  

the probabi l i ty  of vertical cylinder sets when condit ioning on half-plane pasts. 

Let C = (z[ z - i  = c- l , . . . ,  z0 = co). Thus  v(C) = 1/2 z+l. (C typically provides 

enough information to color more particles than are in containers - l  to  0.) Define 

(# x v)t(x, z)(S) to  be the conditional probabil i ty tha t  we see S at t ime t given 

x was the s tate  of the exclusion process at t ime 0 and z was the coloring. Our  

condit ion for the colored exclusion process to be K is tha t  for any e > 0 there 

exists a t such tha t  for 10e most  (x, z) and for all A and C 

[(# x v ) t ( x , z ) ( A A C ) - #  × v(AnC)[ < 10e. 

Fix l, e, A and C. Find a p such tha t  the average of p independent  r andom 

variable t ha t  take value 1 with probabil i ty 1/2 z+l, and 0 with probabil i ty 1 - 

1/21+1, is within e of 1/2 z+l with probabil i ty at least 1 - e2. Choose ~, small 

enough so t h a t / r ' / ( l  + 1) < e. Choose a t large enough so tha t  the previous 
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l e m m a  holds wi th  7. Fix i and now choose t such tha t  L e m m a  12 holds with 

3' and Theo rem 2 holds with e. Then  choose ~ so tha t  t~ < e. Now tha t  i, t, 

and A have been fixed we drop the subscripts  and superscr ipts  on our D(j). Let 

D~(j) = [D(j)/~]& 
Divide D~ into pieces D ,  such tha t  

1. ~,~ On(j) < D~(j) for all i, 

2. Dn(j) = ~ or 0, 

3. Y~d On(j) = p[~, and 

4. On(j) > 0 and D,~(k) > 0 implies [ k -  j[ > l + 1. 

By  the  p a r a g r a p h  above and our conditions on our Dn, if we do this op t imal ly  

we have t ha t  

y ~  ID(j) - D~(j)I < t~ < e and ~ IDa(j) - ED,~( j ) I  < <  (l + 1 ) F ' / <  e. 
j j n 

T h e  first is t rue  because D(j) > 0 for at  most  t different j .  The  second is t rue  

because  the  s u m m a n d  is less than  ~, and is greater  than  zero for a t  most  p(1 + 1) 

different j .  

Let  Sn be the  set o f k  for which D,~(k) = 5. For each n, the sets (zlBk(z) E C) 
for k E S ,  are independent .  We now apply  the weak law of large numbers  to  

conclude t ha t  

I s n l  _ ~2. 
u z I ~ x c ( B k ( z ) ) -  2z+, <e21Sn[ > 1  

kES~ 

Summing  over n and  mult ip lying by ~ yields 

-1  ) 
2-Y~ED~(k )  < 2 e  > l - 2 e  

k k 

and thus 

el ) u z I D ( k ) X c ( B k ( z ) ) - ~  <3e > l - 2 e .  

By definition, 

# x u(A M C) = #(A)u(C) = li(A) 211+1 . 

For 5e mos t  (x, z) 

II~ x v t (x ,z)(AMC) - # x ~,(AMC)I= tit(A) E D ( k ) x v ( B k ( z ) ) -  #'(A)2-~f I 
k 

<_5e. 
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By L e m m a  12 we can do this procedure for most  x. By Theorem 2, for most  

x, I# t (x) (A)  - #(A)l < e. Thus  we have tha t  for 10e most  (x,z)  are such tha t  

I~ x , T ( X , z ) ( A n C )  - - #  x v(A n C ) l  < 10e. 

Thus  the colored exclusion process is K.  | 

COROLLARY 1: The colored exclusion process has a trivial full tail. 

Proof." By the theorem of den Hollander and Steif every Z 2 Markov r andom 

field which is K has a trivial full tail [4]. | 

6. T h e  c o l o r e d  e x c l u s i o n  p r o c e s s  is n o t  l o o s e l y  B e r n o u l l i  

The  simple zero entropy Markov random field mentioned in the introduct ion is 

not  loosely Bernoulli. I t  is not  because an e good f matching of two arbi t rary  

names in the space would imply for every e > 0 there is an ~ good f of two 

arb i t rary  sequences of 0s and ls. Al though the arguments  tha t  follow are more 

complicated,  the idea behind them is the same. 

THEOREM 4: The  colored exclusion process is not  isomorphic to a Bernoulli shift. 

Proof: Because the colored exclusion process is Markovian, by the theorem of 

den Hollander and Steif [4], we only need to show the colored exclusion process 

is not  F 0 1 n e r  i n d e p e n d e n t .  The  definition of F01ner independent  is the same 

as of very weak Bernoulli, except instead of conditioning on the past  tail we 

condit ion on the full tail. More precisely, a Z 2 process is F01ne r  i n d e p e n d e n t  

if for every ~ > 0 there exists an N and a set G of measure at least 1 - ~ so tha t  

for any point  x 

d[0,g]×[0,N](#, #x,N) < ~, 

where #x ,N(A)  = #(w e A[ w~,j = x i ,  j for all ( i , j )  ¢ {0, Y}  x {0, N})  

There  is an d > 0 and a T, such that  for t > T any small t ranslate  (_< 4t) of 

any name a ~, from the Bernoulli two shift, is f t  more tha t  d separated from any 

small t ransla te  of more than  half of the other  points. Define 

S(a')  = (c'[ f t ( S ' ( d ) , B J ( a ' ) )  > e' V0 _< i , j  <_ 4t). 

Thus  #(S(a ' ) )  > .5 for all a'. Suppose tha t  we have an N such tha t  the colored 

exclusion process is F01ner independent  with N and e = pe~/100, and .hpN > T. 
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An N past is any cylinder set defined in the full N tail, ( i , j ) i ( i , j  ~ (0, N)). 

An N past is good if every (a, a ~) E A has at least .2pN particles in containers 

0 through N for all times from 0 to N. We also require that the conditional 

distribution on this square given A is d 2 close to the unconditional distribution. 

The ergodic theorem and the assumption that the colored exclusion process is 

F¢lner independent tell us that most pasts are good. 

We will show more than that most good pasts A and C give substantially 

different conditional distributions on the square. For most A and C there are no 

two points (a, a') E A and (c, c') E C that are close in d. In fact there are no two 

points (a,a') E A and (c,c') E C that at one time are close in d. 

If the colored exclusion process is Folner independent, then there exist good 

pasts A and C and points (a, a') E A and (c, d) E C with c' E S(a'), and some t 

such that  there is an e good 2 matching at time t of (a, a') with (c, c'). 

The 2 matching on column t induces an f matching of the colorings in the 

following way. Write down the ordered pair (l,j) if there exists a k such that  

particle l of (a, a') is in container k at time t, particle j of (c, c') is in container 

k at time t, and both particles have the same color. 

Now we check that  this forms an f matching. If there is an i, greater than the 

minimum i in the list and less than the maximum i in the list, for which there is 

no pair (i , j) ,  then there must have been an error in the 2 matching. The same 

is true for j and the pairing is monotonic. Since the d matching is good these 

ordered pairs form a good f matching from a small translate of a ~ to a small 

translate of c'. Thus d ~ S(a') and we have a contradiction. I 

Finally, we show that the colored exclusion process is not loosely Bernoulli. 

THEOREM 5: The colored exclusion process is not loosely Bernoulli. 

Proof: To show that  it is not loosely Bernoulli we need to repeat essentially the 

same procedure. The difference is that we will arrive at a contradiction by having 

one time, and the image of that time under an f matching close. Choose the 

good pasts A and C, points (a, a') and (c, c') with c' E S(a') as in the previous 

section. Also choose f ,  

f :  (O,N) × (O,N) -+ (O,N) x (O,N), f(a,b)  = (fl(a,b),f2(a,b)),  

such that  f is an e good f matching of (a, a') and (c, d). That  is 

N i l #  of ((i,j)l(a, a')(~,j) ~ (c, c')s(i,j))+ 
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+ E [f l ( i , j )  - f l ( i  + 1, j )  + 1[ + [f2(i,j) - f2( i , j  + 1) + 1[] < c. 

Choose co lumn i of (a, a I) so tha t  it and its image under  f in (c, d )  are f close. 

Wri te  down the  ordered pair  (l , j)  if there exists a k such t ha t  part icle  l of (a, a') 

is in conta iner  k at  t ime t and particle j of (c, c ~) is in container  f l ( t ,  k) at  t ime  

f2(t, k) and b o t h  part icles have the  same color. 

If  there  is an i, greater  t han  the min imum i in the list and less than  the 

m a x i m u m  i in the  list, for which there  is no pair  (l , j) ,  then  there mus t  have been 

an error in the  ] matching.  If the pair  (1, j )  is not followed by the pair  ( l+  1, j + 1), 

then  there  also mus t  have been an error or a t ime when f l ( l , j )  - f l ( l  + 1, j )  ¢ 1 

or f2( l , j )  - f2(1,j + 1) ¢ 1. If  there  is a pair  (l , j)  and also a pair  (l ' , j) ,  then  

there  also mus t  have been a t ime when 

f l ( l , j ) -  f l ( l  + l , j )  ¢ l or f 2 ( l , j ) -  f2( l , j  + l) ¢ l. 

El imina te  these pairs  of the  form (l , j)  and (l ' , j)  from the list. 

Thus  these remaining ordered pairs  form a good f match ing  f rom a 

small  t r ans la te  of a ~ to a small  t rans la te  of d .  Thus  c' ~ S(a ~) and we have 

a contradict ion.  | 
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